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Abstract. We present some exact results on percolation properties of the Ising model, when
the range of the percolating bonds is larger than the nearest neighbours. We show that the
phase diagram for next-nearest neighbour percolation can be exactly obtained from the nearest-
neighbour case, which implies that the percolation threshold,Tp , is still equal to the Ising critical
temperatureTc. In addition, we present Monte Carlo calculations of the finite size behaviour
of the correlated resistor network defined on the Ising model. The thermal exponent,t , of the
conductivity that follows from it is found to bet = 0.2000±0.0007. We observe no corrections
to scaling in its finite size behaviour.

1. Introduction

The connection between percolation and the Ising model has been a popular subject for a
long time. One considers so-called Ising clusters made up of nearest-neighbour spins with
the same spin value. The connectivity behaviour of these clusters is called correlated site
percolation, as the probability distribution of the percolating and non-percolating sites is a
correlated one.

The interest in this problem arose because these Ising clusters were believed to have the
same properties as the droplets in the droplet model [1], i.e. they should diverge at the Ising
critical point with the same critical exponents as those of the Ising model. It became clear
that they did indeed diverge [2] at the Ising critical point, but not [3] with Ising exponents.
An alternative cluster definition was needed to have clusters with the properties of droplets
in the droplet model. These new clusters are precisely the random clusters from the random
cluster formulation of the Potts model, which work is due to Fortuin and Kasteleyn [4]. In
the context of the Ising model, these clusters are called Coniglio–Klein clusters [5], and are
defined by putting bonds between each pair of nearest-neighbour up-spins, but now with
a probabilityp = 1− exp(−2K), whereK is the Ising coupling. Not all bonds of the
Ising clusters appear in the Coniglio–Klein clusters, such that the latter are, in that sense,
‘smaller’ than Ising clusters. The Coniglio–Klein clusters display [5] the correct critical
behaviour: they diverge at the Ising critical point, their linear size diverges as the Ising
correlation length, and the mean cluster size behaves as the susceptibility.

Both the Ising clusters and the Coniglio–Klein clusters have their percolation point at
the Ising critical temperature, albeit with different critical behaviour. The full picture of this
cluster behaviour emerged [6, 7] when the behaviour of both types of clusters was identified
with the phase diagram of theq-state dilute Potts model in the limitq → 1. The tricritical
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point in this phase diagram describes the behaviour of the Ising clusters. This tricritical
point falls in the same universality class as the Ising critical point [8] in the sense that the
central charge isc = 1

2, but the critical exponents involved in the behaviour of the Ising
clusters do not fit into the Kǎc-table [9]; they correspond to half-integer values of the unitary
grid. The Coniglio–Klein clusters are described by the 1+ 1 state symmetric fixed point in
this phase diagram.

Our motivation to reconsider the problem of correlated site percolation is not the droplet
theory of the Ising model but arises from a study of correlated resistor networks; see below.
In this paper, we consider Ising clusters that are made up of bonds with a larger percolation
range, that is, bonds are placed between nearest-neighbour up-spins, but also between next-
and further-neighbouring pairs of equal spins. Let us, throughout this paper, denote the
clusters consisting of bonds between nearest and next-nearest neighbour spin pairs by nnn-
clusters. In this language the Ising clusters are nn-clusters.

It is immediately clear that, if one considers bonds with a longer and longer percolation
range, clusters get bigger and the percolation threshold eventually will move to a
temperature,Tp, that is lower thanTc, the Ising critical temperature. In that case, the
type of correlation is expected to be random percolation. In the limit of percolating bonds
with an infinite range, the percolation temperature moves toTp = 0 and there is crossover to
classical critical behaviour [10]. In three dimensions this effect of a shift in the percolation
threshold has previously occurred with Ising clusters (nn-clusters): the percolation threshold
lies at a temperature a few percent belowTc [11], whereas the Coniglio–Klein clusters have
their percolation threshold atTc. In two dimensions it is known, as stated above, for nn-
clustersTp coincides withTc. It was believed [12] that for nnn-clustersTp < Tc, however,
in this paper we shall show thatTp = Tc for nnn-clusters.

These alternative cluster definitions can be useful in some applications of correlated
percolation. In another paper [13], we present a model, based on correlated percolation,
to explain the experimental results for colossal magnetoresistance. The latter phenomenon
is presently a hot topic in solid state physics [14]. Our model is a correlated resistor
network, obtained by replacing bonds with resistances yielding an effective resistance as
an Ising expectation value. In the present work, we present the technical analysis of the
correlated percolation model with percolating bonds having a longer percolation range than
nearest neighbour. In particular, the resulting phase diagram is used for understanding the
experimental results of colossal magnetoresistance. The correlated resistor network has, to
our knowledge, never been studied in any literature. We performed Monte Carlo calculations
to measure the critical exponents of the CRN. These calculations are also presented in this
paper.

2. The model

We will be concerned with the usual Ising model on a square lattice with Hamiltonian

H = −K
∑
〈ij〉

SiSj − h
∑
j

Sj

whereK is the inverse temperature andh is the magnetic field. The first summation is
over nearest neighbours only. Note that, throughout this paper we will be considering
two different ranges of percolating bonds, i.e. nearest and next-nearest neighbour. Note,
however, that the Isinginteraction is, throughout the paper, exclusively via nearest-
neighbour couplings, as in the above Hamiltonian.
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Figure 1. An illustration of the theorem presented in
the text. On the sites of a lattice, black and white spins
are placed. Spins on the boundary are always black.
Bonds between black spins are present between each
pair of black spins that are nearest neighbours. The
same is true for the white spins, but here bonds are
drawn if the spins are next-nearest neighbours as well.
It can easily be inferred that a face of a black cluster is
either empty or wholly occupied with one and only one
white cluster. Notice that the inclusion of next-nearest
neighbour bonds is essential.

Figure 2. The phase diagram for percolation of Ising
clusters. Up-spins are considered percolating, and
clusters are defined by putting bonds between each
neighbouring pair of up-spins.Tc is the Ising critical
point, andT andh are temperature and magnetic field,
respectively. The heavy full curve is a critical line of
percolation that is in the universality class of random
percolation.Tc is a tricritical point for percolation, and
the broken line is a first-order transition, for Ising as
well as for percolation.

First consider the nn-clusters by putting bonds between all neighbouring pairs of up-
spins, such as the clusters made of the black spins in figure 1. (To adopt the terminology of
the figure, we will label the Ising spins as black and white instead of up and down.) In the
same figure, also the nnn-clusters are illustrated but now for the white spins. Here bonds
are put between next-nearest neighbouring pairs of white spins as well.

The percolation phase diagram for the nn-clusters is known [7] and shown in figure 2.
The heavy full curve is a critical percolation transition. Its exact location is not known,
but the location of the endpoint atT = Tc is exact [2]. The other endpoint, atT = ∞,
corresponds to random percolation and lies at the value ofh corresponding to the percolation
threshold [15]pc ≈ 0.5927 for random percolation. This value denotes the density of up-
spins. The corresponding value ofh is h ≈ 0.188. The critical percolation line is in the
universality class of random percolation, described by the criticalq = 1 state Potts model.
The line merges smoothly with theT -axis at the Ising critical point. For percolation, this
point turns out [7] to be a tricritical point; it is the tricritical point of theq = 1 state dilute
Potts model, where, apart from the usual Potts spins, also vacancies are allowed.

From this phase diagram the corresponding diagram for nnn-clusters can be derived.
Figure 1 illustrates the theorem [16] that will be needed for this derivation of the phase
diagram. It can easily be seen from this figure that there exists a geometrical relation
between the black nn-clusters and the white nnn-clusters. The theorem states thatevery
face of a black nn-cluster is either empty or is wholly occupied by one and only one white
nnn-cluster. A face is a closed area surrounded by elementary loops consisting of the
bonds of one cluster. Let us introduce the following notation: letfB , cB , bB and nB be
the number of faces, clusters, bonds and sites respectively that correspond to the black
spins and nn-clusters in a certain spin configuration. For the white spins and nnn-clusters,
these quantities aref ∗W , c∗W , b∗W andn∗W respectively, where the star denotes the fact that it
concerns nnn-clusters. The theorem then states that

fB = f (0)B + c∗W
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wheref (0)B denotes the number of empty black faces. The number of faces, bonds, sites
and clusters is furthermore coupled via Euler’s equation

fB = bB − nB + cB + 1.

This relation is easily derived by induction and holds for non-cyclic boundary conditions,
e.g. all spins on the boundary are black. Combining these two relations yields

c∗W = cB + bB − nB − f (0)B + 1.

Thus, this relation expresses the number of white nnn-clusters,c∗W , in terms of the number
of black nn-clusterscB . Apart from the numbers of clusters it involves only locally defined
quantities: bonds, sites and empty faces.

The above relations are purely geometrical and hence are completely independent of
the probability distribution of the black and white spins. Therefore they are valid as Ising
expectation values as well:

〈c∗W 〉 = 〈cB〉 + 〈bB〉 − 〈nB〉 − 〈f (0)B 〉 + 1 (1)

where the brackets denote the expectation values. Note that the numbers of bonds, sites
and empty black faces are simply local Ising operators, that is

〈bB〉 = 1
4

∑
〈ij〉
〈(1+ Si)(1+ Sj)〉

which amounts to counting the number of black bonds. In the same way

〈nB〉 = 1
2

∑
j

(1+ 〈Sj 〉)

counts the number of black spins and

〈f (0)B 〉 = 1
16

∑
〈ijkl〉
〈(1+ Si)(1+ Sj )(1+ Sk)(1+ Sl)〉

counts the number of empty, black faces, where〈ijkl〉 denotes a summation over each
elementary plaquette of the square lattice.

The expectation value of the number of clusters plays the role of the free energy in
a percolation problem [16]. It becomes non-analytic at a percolation transition. From
equation (1) we see thatc∗W can only become critical whencB is critical, that is, when the
black spins are at their percolation threshold, or when the Ising expectation values become
non-analytic, that is, at the Ising critical point and at the coexistence lineT < Tc, h = 0.
This immediately yields the phase diagram for percolation of the black nnn-clusters: it is
the mirror image of that of the nn-clusters withh replaced by−h. This phase diagram is
shown in figure 3.

It is somewhat surprising that extending the range of percolating bonds to next-nearest
neighbours does not alter the percolation threshold at theT -axis. So for next-nearest
neighbour percolating bondsTp = Tc still holds. It was expected [12] that a larger
percolation range immediately causes a lower percolation thresholdTp < Tc. Due to the
above geometrical relations this is not the case. Upon extending the percolation range even
further than the next-nearest neighbour, however, no such relations exist, and we expect the
percolation threshold,Tp, indeed to drop below the Ising critical temperatureTc.

In the latter case, the topology of the phase diagram will change. There is no tricritical
point any more, and the critical percolation line will end somewhere at theT -axis below
Tc. Beyond this point, there is still a first-order transition for percolation. We expect the
percolation point,Tp, in that case to be a critical endpoint. Such a point is expected [17] to
have, in addition to the critical exponents of the universality class of the critical line, also
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Figure 3. The same phase diagram as in figure 2, but now for nnn-clusters. Percolating bonds
are drawn between pairs of up-spins that are nearest or next-nearest neighbours. The phase
diagram is the same as that for nn-clusters but withh replaced with−h.

a first-order exponenty = 2. Indeed, when the range of percolating bonds becomes very
large, it will eventually become larger than the Ising correlation length. In such a case,
correlations in the probability distribution of empty and occupied sites are only present on
a much smaller scale than the range of percolating bonds. This strongly suggests that the
universality class of the endpoint of the critical line is that of random percolation.

Eventually, when the percolation range approaches infinity, percolation is believed to
exhibit classical critical behaviour [10], that is, displays mean-field exponents.

3. Scaling analysis

From universality, we expect both types of critical behaviour, nn-percolation and nnn-
percolation, to be in the same universality class. In the light of equation (1), this statement
is less obvious than it seems. The singular behaviour of the ‘free energy’c∗W of nnn-clusters
is expressed incB but also in Ising operators, and bothcB and the Ising expectation values
become critical. Hence, in addition to the critical behaviour ofcB also Ising exponents show
up. In particular, whenc∗W is considered as a function of the scaling fieldu1, in addition to
the exponent 2/y that is expected to describe the non-analytic behaviour of the free energy
cB , also the magnetization exponent1

8 is present.
The following analysis relies on the work of Stella and Vanderzande [7] on correlated

percolation in the Ising model, which, in its turn, goes back to results from several authors
on theq-state Potts model that are reviewed by Nienhuis in [8]. Their work yields the
exact critical behaviour of theq-state (dilute) Potts model. We will only globally repeat the
analysis, and refer the interested but unfamiliar reader to these references.

Nn-percolation is in the universality class of the diluteq-state Potts model in the limit
of q → 1. Its Hamiltonian [6, 7] is

H = −L
∑
〈ij〉

ninj −1
∑
j

nj − J
∑
〈ij〉

ninj (δσi ,σj − 1)−H
∑
j

nj (δσj ,1− 1). (2)

The variablesni = 0, 1 are the Potts lattice gas variables. Potts spinsσi = 0, . . . , q are
present on the sites whereni = 1.

For q = 1 the Hamiltonian becomes equal to the Ising Hamiltonian and completely
independent ofJ andH . SubstitutingSi = 2ni −1 turns the lattice gas variables into Ising
variables. The Hamiltonian then becomes, apart from a constant,

H = −K
∑
〈ij〉

SiSj − h
∑
j

Sj
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with K = L/4 and h = 2L + 1/2. This means that the free energy resulting from
equation (2) forq = 1 is equal to that of the Ising model. The full free energy is

f (L,1, J,H, q) = − lim
N→∞

1

N
lnZ(N)(L,1, J,H, q)

where N denotes the number of sites on the lattice. The generating function [4] for
percolation is

c(L,1, J,H) = df (L,1, J,H, q)

dq

∣∣∣∣
q=1

. (3)

Quantityc is, withH = 0, the expectation value of the number of clusters. It plays the role
of the free energy in percolation problems, but is actually the derivative of a free energy
with respect to a symmetry parameter. The limitJ → ∞ corresponds to nn-clusters, and
J = 2K yields the Coniglio–Klein clusters.

In the language of the renormalization group, the tricritical point in theq = 1 dilute
Potts model has four relevant exponents and corresponding scaling fields, two thermal and
two magnetic ones. Expressing the free energy in terms of these scalings fieldsui , the
scaling relation is

f (u1, . . . , u4, q) = b−2f (by1u1, . . . , b
y4u4, q) (4)

whereb is the renormalization length, and the tricritical point is located atu1 = · · · =
u4 = 0. The exact values of the exponents are [8, 18]y1 = 15

8 andy2 = 1 for the thermal
exponents (which are just the Ising critical exponents) andy3 = 187

96 and y4 = 115
96 for

the magnetic exponents. Note that the ‘field’q, which is a symmetry parameter, cannot
change under renormalization. Differentiating this free energy with respect toq yields the
percolation free energy. Applying this to the above scaling relation yields, apart from the
direct derivative toq, also derivatives with respect to the thermal scaling fieldsu1 and
u2. These fields are nonlinear functions of the coupling constants and vanish at the critical
point, so correct to first order in the couplings, they are

u1 = K −Kc(q)+ · · · (5)

u2 = h− hc(q)+ · · · (6)

when J = ∞. The location of the tricritical point thus depends on the value ofq. The
remaining two fieldsu3 and u4 are magnetic scaling fields; they correspond to Potts-like
magnetic fields. The Potts-model can only be critical if those fields are zero, regardless of
the value ofq, which means that the derivative of these fields with respect toq yields zero.

From these remarks it follows that in the expression forc several derivatives are present:
a direct derivative with respect toq and derivatives with respect to the thermal scaling fields:

c = ∂f

∂q
+ ∂f

∂u1

∂u1

∂q
+ ∂f

∂u2

∂u2

∂q

∣∣∣∣
q=1

. (7)

Applying equation (4) to this expression and taking the limit ofq → 1 yields the critical
behaviour ofc. Note that the last two terms of the right-hand side of (7) are, withq = 1,
just derivatives of the Ising free energy: they give the Ising energy and magnetization, and
thus yield Ising critical behaviour. The values of the exponentsy1 and y2 are the Ising
valuesy1 = 1 andy2 = 15

8 . This gives for the singular behaviour ofc as a function of the
thermal fieldu1

c ∼ A1|u1|2/y1 + A2|u1|(2−y1)/y1 + A3|u1|(2−y2)/y1. (8)
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The most relevant of these exponents is(2− y2)/y1 = 1
8, the exponent of the Ising order

parameter. The singular behaviour ofc thus is described by an exponent1
8, in contrast to

what is expected for the behaviour of a free energy-like quantity: normally in a free energy
only the first term in equations (7) and (8) appears, yielding a critical exponent 2/y1 = 2 for
the percolation free energyc. In our case, this exponent indeed appears in the expression
for c, but is dominated by the exponent1

8. The fact that an exponent less than 1 appears
in the ‘free energy’ (which is forbidden by stability) is due to the fact thatc is not a true
free energy but a derivative of a free energy with respect to the symmetry parameterq, see
equation (3).

The order parameterP (the density of sites in the infinite cluster) and the ‘susceptibility’
(the mean cluster size) arise from differentiatingc with respect toH . The free energy,f ,
itself becomes completely independent ofH in the limit for q → 1, which means that only
the derivatives of∂f/∂q with respect toH yield a non-zero result. The other terms in
equation (7) vanish upon taking the derivative. This means that the critical behaviour of
the order parameter and the susceptibility is not affected by the ‘wrong’ critical behaviour
of c.

From the scaling results (8) ofc we can derive the critical behaviour of the nnn-clusters
using equation (1). The dominating exponent in the right-hand side of (1) is again1

8, which
appears inc but also in the Ising magnetization〈nB〉. This shows that the critical behaviour
of c andc∗, that is, of nn-clusters and nnn-clusters, is governed by the same exponents.

The same must be true for the order parameter,P , and the susceptibility of nnn-
percolation. Again these quantities arise from differentiating the free energyc∗ with respect
to the Potts fieldH . Although c∗ is different fromc in its dependence onH , both amount
to a diluteq = 1 states Potts model. With the identification of the critical behaviour ofc

andc∗ it follows that atTc both free energies must be at a tricritical point in the full phase
diagram of this model.

We conclude that percolation of nn-clusters and of nnn-clusters is in the same
universality class. The critical behaviour of the percolation quantities is governed by the
same set of critical exponents.

4. The correlated resistor network

The behaviour of the Ising model as a resistor network is relevant for our work on colossal
magnetoresistance [13]. A percolation model is turned into a resistor network [19] by
replacing the bonds with resistors. Non-percolating bonds are left empty (that is, have
infinite resistance), bonds that are present get a unit resistance. This can be done both for
nn-clusters and nnn-clusters. The assignment of resistors is depicted in figure 4.

For random percolation the resistor network is a random resistor network. The
corresponding correlated resistor network has, as far as we know, never been studied.
In this section we present our calculations on the correlated resistor network. The interest
in resistor network problems is in the expectation value of the overall resistance of the
(infinite) lattice. To be more precise: consider a lattice consisting ofL × L spins, where
L eventually is sent to infinity, and keep the lower row at a fixed potentialV = 0 and the
upper row atV = 1. The interest is in the overall conductance,σ , of the lattice, which is
in this case equal to the expectation value of the current.

The phase diagram of the resistor network is of course the same as that of its percolation
counterpart: when there is percolation, the conductance is finite, and the conductance is zero
when there is no percolation. Experimental results for colossal magnetoresistance show a
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Figure 4. The assignment of resistors to a spin configuration. Assignment for nn-clusters is
shown in (a), for nnn-clusters in (b). Here black spins (spin-up) are considered percolating, so
bonds between two black spins have a unit resistance. Bonds between black and white spins or
between two white spins get an infinite resistance.

sharp increase in the resistance as a function of temperature at or nearby the Curie pointTc.
The resistance drops sharply both above and below this point. From our phase diagrams it
is directly clear that the diagram of figure 2 is ruled out. So conduction via next-nearest
neighbour bonds should at least be present to produce the correct phase diagram.

Turning, however, to critical exponents the situation is different. In this case it is
the exponentt governing the vanishing conductance,σ , upon approaching the percolation
threshold:

σ(T ) ∼ |T − Tp|t for T → Tp.

Based on universality (again confirmed for the percolation exponents) one may well assume
that the exponentt is the same for nn- and nnn-networks. Hence we studied the (simpler)
case of the resistor network with only nn-clusters.

The random resistor network is a notoriously unsolved problem in statistical physics,
but there are good numerical estimates of the exponentt . The best estimate [20] in two
dimensions known to us ist = 1.299± 0.002. To obtain the value oft for the correlated
resistor network in the Ising case, at the tricritical percolation point, we performed Monte
Carlo calculations at the Ising critical point, and calculated the Ising expectation value of
the conductance for different system sizes. We used the Wolff-algorithm [21] for the Monte
Carlo part, and the multigrid method of Edwardset al [22], based on the standard code
AMG1R4 [23], to calculate the conductance of a spin configuration.

To test our program, we calculated the exactly known [7, 8] exponent of the order
parameter. The order parameter of percolation is the density of sites,P , in the infinite
cluster. From finite size scaling, it follows that this quantity scales with the linear system
sizeL as

P(L) ∼ L−2+yh for L→∞ (9)

whereyh is the most relevant magnetic eigenvalue. In our Monte Carlo runs, we measured
the number of sites in the ‘spanning cluster’, the cluster that extends over the lattice and
thus allows for conductance. With the scaling equation, the behaviour ofP as a function of
the system size yields an estimate ofyh. We calculatedP with the system sizeL running
from 7 to 350, and the data are plotted in figure 5. The figure, a log–log plot, shows that the
system sizes are too small to exhibit the behaviour of equation (9); corrections to scaling
have to be included. We did this, and foundyh = 1.945±0.005 and a correction to scaling
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Figure 5. Log–log plot of the density of sitesP in the spanning cluster at the Ising critical point,
as a function of the linear system sizeL. The plot shows a far from straight line, meaning that
corrections to scaling are important. The broken curve is the result of our fit against the function
P(L) = a1L

−α(1+a2L
−β). The values ofα andβ areα = 0.055±0.005 andβ = 0.92±0.07.

exponentω = 0.96± 0.08. The exact result isyh = 187
96 ≈ 1.948. Our estimate thus agrees

well within the error bars.
It is believed that a similar finite size scaling relation is valid for the conductanceσ . It

should scale with the linear system size,L, as

σ(L) ∼ L−t/ν (10)

whereν is the percolation exponent of the correlation length. We calculated the conductance
again withL running from 7 to 350. The data are plotted in figure 6; the log–log plot almost
shows a straight line. In fitting the data to equation (10), we tried to include a correction
to scaling term, but, due to the almost perfect scaling behaviour, this did not yield sensible
results. Therefore we performed the fit against equation (10) without additional terms,
yielding the valuet/ν = 0.2000± 0.0007. Due to the absence of the correction to scaling
term the error in this result might be an underestimation of the actual error.

Figure 6. Log–log plot of the conductanceσ of the lattice at the Ising critical point, as a function
of the linear system sizeL. The plot shows an almost a straight line. Fitting the scaling behaviour
with a correction to scaling term did not yield sensible results. The broken line is the result of
our fit against the functionσ(L) = aL−α , giving a value ofα = 0.2000± 0.0007.
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The exponentν of percolation at the Ising critical point isν = 1 for the direction
parallel to theT -axis andν = 8

15 for the other directions. That means that the exponentt

that governs the vanishing conductance atTc is t ≈ 0.200 for the temperature direction and
t ≈ 0.107 for the field direction. This is a surprisingly low result, as compared with thet

value of the random resistor network,t ≈ 1.30. The presence of critical correlations thus
strongly influences the value of the conductance exponents.

Equation (10) relies on the validity of finite size scaling, and it is in this case nota
priori clear that it is valid, since there does not exist a rigorously defined renormalization
transformation for the conductance, neither for the random resistor network nor for the
correlated resistor network. Our case is the latter, and we checked the validity of the scaling
assumption by performing calculations for different system sizes and different temperatures
aroundT = Tc.

Scaling can be derived if there is a field in the percolation model that couples to the
conductanceσ and that shows a similar behaviour under renormalization transformations as,
e.g. the percolation order parameter. Let us call this fieldhc and its corresponding critical
exponentyc. The ‘free energy’c then obeys

c(ut , hc, L) = b−2c(byt ut , b
ychc, L/b)

whereb is the renormalization length,ut is the reduced temperature, andL is the system
dimension. Such a fieldhc is not known but, assuming that it exists, the scaling relation
of the conductance can be derived. The conductance is the derivative with respect to this
field:

σ = ∂c

∂hc
. (11)

Putting b = L and ut = hc = 0 yields equation (10) witht/ν = 2− yc. If we do not
set ut to zero, it follows from equation (11) thatσLt/ν is a function ofLyt ut . Plotting
σLt/ν againstLyt ut (with yt = 1/ν = 1 in the Ising model) must display the so-called data
collapse: plots for different values ofL must collapse onto the same curve.

We performed Monte Carlo calculations around the critical point for different system
sizes and plotted the conductance as described above. The plot is shown in figure 7 and

Figure 7. The Ising expectation value of the conductance in the neighbourhood of the critical
point for different system sizesL. Error bars have the magnitude of the symbol size. The
values for the exponents used areν = 1 and t = 0.20. The data for different system sizes
clearly collapse onto the same curve, with small deviations arising only away from the critical
point for smaller system sizes. This clearly shows that the concept of scaling applies to the
conductance.
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clearly shows that the values of the conductance fall onto the same curve. This justifies the
validity of the scaling assumption in the case of the correlated resistor network.
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